
CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department

Boston University

Lecture 16: Lazy Evaluation in Haskell
o Review: Lazy Evaluation and Simultaneous Let
o Lazy Evaluation and Pattern Matching
o Infinite Lists
o Infinite Trees

The power of infinite lists leads to some very interesting algorithms in Haskell, particularly
when generating useful infinite series.

Prime Numbers:

Main> factors x = filter (\y -> x `mod` y == 0) [1..x]
Main> primes = [x | x <- [1..], factors x == [1,x]]
Main> take 20 primes
[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]

Factorials:

Main> fact = map (\n -> product [1..n]) [1..]
Main> take 10 fact
[1,2,6,24,120,720,5040,40320,362880,3628800]

Fibonacci Numbers:

Main> fib = 1:1:[x+y | (x,y) <- zip fib (tail fib)]
Main> take 18 fib
[1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584]

Programming with Infinite Lists

Infinite Trees

10.0

5.0 20.0

1.25 5.0 5.0 20.0 5.0 20.0 20.0 80.0

2.5 10.0 10.0 40.0

You can create infinite data structures using constructors – just leave off the
base case!

tree 10.0 =>

Main> tree 10 -- NOOOOO, WAYNE, DON'T DO IT AHHHHH!
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node
(Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node (Node

Infinite Trees

Main> level 0 $ tree 10
[10.0]

Main> level 1 $ tree 10
[5.0,20.0]

Main> level 2 $ tree 10
[2.5,10.0,10.0,40.0]

Main> level 3 $ tree 10
[1.25,5.0,5.0,20.0,5.0,20.0,20.0,80.0]

Infinite Trees

10.0

5.0 20.0

1.25 5.0 5.0 20.0 5.0 20.0 20.0 80.0

2.5 10.0 10.0 40.0

But lazy evaluation can be very inefficient, due to the space and time required to create thunks
(stored, unevaluated, expressions)!

The classic example is the foldl function, which is analogous to foldr, but for left-
associative functions. Recall how foldr works:

Problems with Lazy Evaluation

Problems with Lazy Evaluation
Essentially, foldr inserts an infix version of f between every member of the list, and ends
with v:

foldr f v [e1,e2, ..., en] = e1 `f` e2 `f` ... `f` en `f` v

But the important point for now is that this makes the infix `f` right associative:

+

2 +

3 +

4 0

foldr (+) 0 [2,3,4] => 9

=> 9

=> 7

=> 4

(2 + (3 + (4 + 0)))

Problems with Lazy Evaluation
Foldr is a common function in Haskell, but it does not do well with Lazy Evaluation:

Prelude> :set +s -- print out performance data

Prelude> foldr (+) 0 [1..1000000] -- 10^6
500000500000
(0.78 secs, 161,594,000 bytes)

Prelude> foldr (+) 0 [1..10000000] -- 10^7
50000005000000
(7.46 secs, 1,615,380,104 bytes)

Prelude> foldr (+) 0 [1..100000000] -- 10^8
*** Exception: stack overflow

Q: Why is Haskell using so much space to just add a bunch of integers??

Problems with Lazy Evaluation
A: Lazy evaluation is creating thunks for each subexpression! Each one has to be stored!

+

2 +

3 +

4 0

foldr (+) 0 [2,3,4] => 9

=> 9

=> 7

=> 4

(2 + (3 + (4 + 0)))

You can't evaluate this until you get to
the end! You have to go down the whole
list, storing all the subexpressions, and
then go back and add them all up!

Problems with Lazy Evaluation
A: Lazy evaluation is creating thunks for each subexpression! Each one has to be stored!

Problems with Lazy Evaluation
What's the solution? Well, for foldr, we can try to rearrange the computation so that we
have something to evaluate at each step. The function which does this is foldl (fold left):

foldl f v [e1,e2, ..., en] = v `f` e1 `f` e2 `f` ... `f` en

but with left associativity, and where the initial value v is now on the left:

+

4+

3+

0 2

2 <=

(((0 + 2) + 3) + 4)

Now we can evaluate this from the front of the list:

0
0 + 2 = 2

2 + 3 = 5
5 + 4 = 9

5 <=

9 <=

foldl (+) 0 [2,3,4] => 9

Problems with Lazy Evaluation
Ok, let's try it!

Main> :set +s

Main> foldr (+) 0 [1..1000000] - 10^6
500000500000
(0.75 secs, 346,961,056 bytes)

Main> foldl (+) 0 [1..1000000] - 10^6
500000500000
(0.53 secs, 241,696,928 bytes)

Main> foldr (+) 0 [1..10000000] - 10^7
Exception: stack overflow

Main> foldl (+) 0 [1..10000000] - 10^7
50000005000000
(19.34 secs, 2,416,474,776 bytes)

?? Foldl seems to be better, but not by much! ??

Problems with Lazy Evaluation
The problem is that foldl still uses lazy evaluation and still stores thunks
without evaluating the subexpressions!

foldl :: (a->b->a) -> a -> [b] -> a
foldl f v [] = v
foldl f v (x:xs) = foldr f (f v x) xs)

Problems with Lazy Evaluation
The solution is to force evaluation of one of the arguments:

foldl' :: (a->b->a) -> a -> [b] -> a
foldl' f v [] = v
foldl' f v (x:xs) = foldr f ((f $! v) x) xs)

The strict application
operator

$!

forces a function to
evaluate its argument
immediately.

foldl' is defined
in Data.Foldable
this way.

Problems with Lazy Evaluation
By importing Data.Foldable, we can use this more efficient version of foldl. The same
strategy can be used throughout Haskell to improve performance, but it is tricky!

Prelude> foldr (+) 0 [1..10000000]
50000005000000
(2.67 secs, 1,615,379,304 bytes)

Prelude> foldl (+) 0 [1..10000000]
50000005000000
(2.06 secs, 1,612,377,936 bytes)

Prelude> import Data.Foldable
(0.00 secs, 0 bytes)

Prelude Data.Foldable> foldl' (+) 0 [1..10000000]
50000005000000
(0.24 secs, 880,077,648 bytes)

Scope of Non-Local References (Free Variables)

